среда, 18 января 2012 г.

Высокопроизводительная сварка


Для автоматической дуговой сварки под флюсом используют непокрытую электрод-ную проволоку и флюс для защиты дуги и сварочной ванны от воздуха. Подача и переме-щение электродной проволоки механизированы. Автоматизированы процессы зажига-ния дуги и заварки кратера в конце шва. В процессе автоматической сварки под флюсом дуга горит между проволокой и основ-ным металлом. Столб дуги и металлическая ванна жидкого металла со всех сторон плотно закрыты слоем флюса толшиной 30 35 мм. Часть флюса расплавляется, в ре-зультате чего вокруг дуги образуется газовая полость, а на поверхности расплавленного металла ванна жидкого шлака. Для сварки под флюсом характерно глубокое проплав-ление основного металла. Действие мощной дуги и весьма быстрое движение электрода вдоль заготовки обусловливают оттеснение расплавленного металла в сторону, потиво-положную направлению сварки. По мере поступательного движения электрода происхо-дит затвердевание металлической и шлаковой ванн с образованием сварного шва, покры-того твердой шлаковой коркой. Проволоку подают в дугу и перемещают ее вдоль шва с помощью механизмов подачи и перемещения. Ток к электроду поступает через токопровод. Дуговую сварку под флюсом выполняют сварочными автоматами, сварочными голов-ками или самоходными тракторами, перемещающимися непосредственно по изделию. Назначение сварочных автоматов подача электродной проволоки в дугу и поддержание постоянного режима сварки в течение всего процесса. Автоматическую сварку под флюсом применяют в серийном и массовом производствах для выполнения длинных прямолинейных и кольцевых швов в нижнем положении на металле толщиной 2 100 мм. Под флюсом сваривают металлы различных классов. Автоматическую сварку широко применяют при изготовлении котлов, резервуаров для хранения жидкостей и газов, корпусов судов, мостовых балок и других изделий. Она является одным из основных звеньев автоматической линий для изготовления сварных автомобильных колес и ста-нов для производства сварных прямошовных и мпиральных труб.
При сварке в защитном газе электрод, зона дуги и сварочная ванна защищены струей защитного газа. В качестве защитных газов применяют инертные газы ( аргон и гелий) и активные газы (углекислый газ, азот, водород и др.), а иногда смеси двух газов и более. Сварка в среде защитных газов в зависимости от степени механизации процессов подачи присадочной или сварочной проволоки и перемещения сварочной горелки может быть ручной, полуавтоматической и автоматической. По сравнению с ручной сваркой покрытыми электродами и автоматической под флюсом сварка в защитных газах имеет следующие преимущества: высокую степень защиты расплавленного металла от воздействия воздуха; отсутствие на поверхности шва при применении аргона оксидов и шлаковых включений; возможность ведения процесса во всех пространственных положениях; возможность визуального наблюдения за процессом формирования шва и его регулирования; более высокую производительность процесса, чем при ручной дуговой сварке; относительно низкую стоимость сварки в угле-кислом газе. Области применения сварки в защитных газах охватывают широкий круг материа-лов и изделий (узлы летательных аппаратов, элементы атомных установок, корпуса и трубопроводы химических аппаратов и т. п.). Аргонодуговую сварку применяют для цветных (алюминия, магния, меди) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и их сплавов, а также легированных и высоколегированных сталей.

Дефекты в соединениях бывают двух типов: внешние и внутренние. В сварных соединениях к внешним дефектам относят наплывы подрезы, наружные непровары и несплавления, поверхностные трещины и поры. К внутренним скрытые трещины и поры, внутренние непровары и несплавления, шлаковые включения и др. В паяных соединениях внешними дефектами являются наплывы и натеки припоя, неполное заполнение шва припоем; внутренними поры, вкючения флюса, трещины и др. Качество сварных и паяных соединений обеспечивают предварительным контролем материалов и заготовок, текущим контролем за процессом сварки и пайки и приемочным контролем готовых сварных или паяных соединений. В зависимости от нарушения целостности сварного соединения при контроле различают разрушающие и неразрушающие методы контроля.

пятница, 13 января 2012 г.

Дуговая резка

Ручную разделительную резку применяют при необходимости вырезки отверстий, раскроя листов, обрезки профилей и для других мелкосерийных работ по термической резке цветных металлов и сплавов, высоколегированных нержавеющих сталей, к которым неприменима газокислородная или керосинокислородная резка Резку производят постоянным током прямой полярности. Источники питания должны иметь крутопадающую вольтамперную характеристику. В качестве рабочего плазмообразующею газа рекомендуется применять: для резки низколегированных, легированных и углеродистых сталей— воздух; для резки высоколегированных, коррозионно-стойких сталей—азот, азотно-водородную смесь, воздух; для резки алюминия, меди и их сплавов — азот, азотно-водородную смесь, аргон, аргоноводородную смесь.
При выборе режима ручной резки руководствуются характеристикой плазмотрона. Например, при работе плазмотроном КДП-2 величина тока может быть не более 250 А, а при работе на установке УПР-201 — не более 200 А и т. д Давление (расход) газа устанавливают также в соответствии с паспортной характеристикой плазмотрона. Эффективность резки во многом зависит от напряжения, которое в свою очередь растет с увеличением расхода газа и уменьшением диаметра канала сопла. Однако этот рост ограничен источником, у которого напряжение холостого хода не может быть больше 180 В. Особенностью режима плазменной резки является неизменность режима для металла различной толщины; в пределах толщин установленных для данного плазмотрона, меняется только скорость резки. На 23.5. показано уменьшение скорости резки при чрезмерном увеличении давления плазмообразующего газа, что делать не следует.
Перед резкой необходимо проверить правильность подсоединения аппаратуры (источника тока, газа, воды) к коллектору и плазмотрону и отрегулировать ток, расход газа и воды. После этого произвести пробное зажигание дуги зажигалкой, с помощью осциллятора или дежурной дуги.
Воздушно-дуговая резка является простым технологическим процессом и применяется для разделительной резки деталей небольшого размера, для обрезки приливов литья, удаления дефектов литья н сварных швов и другой поверхностной строжки. Точность резки невысокая. При резке вылет электрода не должен превышать 100 мм, и по мере обгорания электрод следует выдвигать из зажима электрододержателя. Разделительную резку следует вести справа налево, наклоняя электрод на 50—60° к изделию (23.8, а). В начале резки следует открыть воздушный клапан, а затем возбудить дугу и начать процесс резки. Резку ведут постоянным током обратной полярности, что обеспечивает наибольшую производительность. Не следует в процессе резки нажимать на электрод, так как он может сломаться. Режимы воздушно-дуговой резки приведены в табл. 23.2.
Для поверхностной воздушно-дуговой резки (23.8, б) применяют те же оборудование и резаки, что и для разделительной. Режимы поверхностной резки для удаления дефектных мест сварки электроприхваток, выплавки корня шва приведены в табл. 23.3. Недостаток воздушно-дуговой резки заключается в науглероживании поверхности разрезаемой стали на глубину 0,06—0,08 мм. Несколько увеличивается зона термического влияния у стали с повышенным содержанием углерода.
Плазма - ионизированный газ, содержащий электрически заряженные частицы и способный проводить ток. Ионизация газа происходит при его нагреве. Степень ионизации тем выше, чем выше температура газа. В центральной части сварочной дуги газ нагрет до температур 5000 ... 30 000 °С, имеет высокую электропроводность, ярко светится и представляет собой типичную плазму. Плазменную струю, используемую для сварки и резки, получают в специальных плазмотронах, в которых нагревание газа и его ионизация осуществляются дуговым разрядом в специальных камерах.
Процесс плазменной резки основан на использовании воздушно-плазменной дуги постоянного тока прямого действия (электрод-катод, разрезаемый металл - анод). Сущность процесса заключается в местном расплавлении и выдувании расплавленного металла с образованием полости реза при перемещении плазменного резака относительно разрезаемого металла.
Для возбуждения рабочей дуги (электрод - разрезаемый металл), с помощью осциллятора зажигается вспомогательная дуга между электродом и соплом - так называемая дежурная дуга, которая выдувается из сопла пусковым воздухом в виде факела длиной 20-40 мм. Ток дежурной дуги25 или 40-60 А, в зависимости от источника плазменной дуги. При касании факела дежурной дуги металла возникает режущая дуга - рабочая, и включается повышенный расход воздуха; дежурная дуга при этом автоматически отключается.
Применение способа воздушно-плазменной резки, при котором в качестве плазмообразующего газа используется сжатый воздух, открывает широкие возможности при раскрое низкоуглеродистых и легированных сталей, а также цветных металлов и их сплавов.
Преимущества воздушно-плазменной резки по сравнению с механизированной кислородной и плазменной резкой в инертных газах следующие:
  1. простота процесса резки; применение недорогого плазмообразующего газа - воздуха;
  2. высокая чистота реза (при обработке углеродистых и низколегированных сталей); 
  3. пониженная степень деформации; 
  4. более устойчивый процесс, чем резка в водородосодержащих смесях.


Трубопроводы.

Сварка трубопроводов плавящимся электродом .


При необходимости соединить растянутый трубчатый элемент с плоскими
элементами проката целесообразно выполнять такое соединение путем
приварки торца трубы к толстому плоскому элементу.Трубчатые элемен-
ты нецелесообразно соединять с помощью врезаемых косынок.
Стыковое соединение труб из термических упрочняемых сплавов в завод-
ских условиях целесообразно выполнять в виде косого стыка.При такой
конструкции соединения уменьшится ослабление рабочего сечения труб-
чатого элемента под термическим воздействием сварки.Монтажный стык
трубчатых элементов можно выполнять при помощи трубчатой накладки
со скошенными торцами.При этом трубы в стыке не свариваются.
Рекомендуется выполнять стыковые соединения трубчатых элементов
без промежуточных флянцев или подобных им деталей.В тех случаях,когда
нельзя избежать соединений элементов различной толщины,рекомендуется
более толстый элемент скашивать с помощью фрезерования или строжки.
В соединениях конструкций,предназначенных для работы при переменных
нагрузках переход от большей толщины к меньшей должен быть плавным.
В прессованных профилях рекомендуется предусматривать выпрессовку
профиля с плавным переходом.Во всех случаях следует избегать соединений элементов различной толщины.
с